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Nonlinear Lattice Gas Hydrodynamics 
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Starting from a microdynamical description, we derive the equations governing 
the evolution of the hydrodynamic variables in a lattice gas automaton. The 
essential features are: (i) the local collision rules satisfy semi-detailed balance; 
this condition guarantees that a factorized local equilibrium distribution of the 
Fermi-Dirac form is invariant under the collision step, but not under propaga- 
tion; (ii) particles entering a collision are uncorrelated (Boltzmann hypothesis); 
and (iii) the system can be arbitrarily far from global equilibrium; we do not not 
assume linear response, as usually imposed, to obtain the dissipative contribu- 
tions. Linearization of the resulting hydrodynamic equations leads to Green- 
Kubo formulas for the transport coefficients. The main result is the set of fully 
nonlinear hydrodynamic equations for the automaton in the lattice Boltzmann 
approximation; these equations have a validity domain extending beyond the 
region close to equilibrium. 

KEY WORDS: Hydrodynamic equations; lattice gas automata; nonlinear 
response; Boltzmann hypothesis; Green-Kubo transport coefficients. 

One of the main objectives of statistical mechanics is to provide a connec- 
tion between the microscopic dynamics of a system with many degrees of 
freedom and its macroscopic behavior. In this context, we propose the 
derivation of the fully nonlinear hydrodynamic equations that describe the 
macroscopic evolution of a lattice gas automaton. Previous derivations of 
hydrodynamic equations from the automaton microdynamics 1~-5~ are 
restricted to regions close to global equilibrium, thus limiting the validity 
of the results obtained in this way to a regime in which linear response and 
simple fluctuation-dissipation relations are valid. The present treatment 
does not make use of this hypothesis. Instead, it is assumed that the system 
is close to a local equilibrium state, where the space and time variation of 
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the thermodynamic potentials occurs on a hydrodynamic scale (i.e., 
gradients are small). This is the usual Chapman-Enskog picture for a non- 
equilibrium system, which is necessary to derive the hydrodynamic 
equations from the microscopic dynamics. 

A lattice gas automaton consists of a collection of particles moving on 
a regular d-dimensional lattice s at discrete time steps. A particle on a 
given node (with position denoted by r) has a velocity chosen from a dis- 
crete set of values {g} ~=, corresponding to the particle being at rest, or to 
the particle propagating in one time step to sites which are the nearest 
neighbors, next nearest neighbors, etc. Each of these velocity states (labeled 
by Latin indices i, j,...), corresponds to a channel associated to a lattice 
node. We require that there be a maximum of one particle per channel. 
This exchtsion principle is important because it allows a symbolic represen- 
tation of the state of the system in terms of a given set of bits, and of its 
dynamics in terms of operations over sets of bits, which are easily 
implemented on a computer. The state of the automaton at time t is thus 
described by specifying the configuration on each and every node, i.e., the 
set of bits {n~(r, t)} ~/=, before collision, or the set of bits {n* (r, t)} ~'=, after 
collision. 

The evolution of the automaton takes place in two stages: First, a 
propagation step, in which particles are moved according to their velocity; 
second, a local collision step, during which at each node a new configura- 
tion is chosen in a prescribed fashion as a function of the precollisional 
configuration. This second step is crucial to determine the type of physics 
the automaton will exhibit at the macro- and mesoscopic levels. In par- 
ticular, the collision step should preserve the quantities that are invariant 
under the dynamics of the model system. The microdynamics of the 
automaton can then be summarized by the equation 

hi(r, t +  1 )=  n* ( r - - c / ,  t) (1) 

which means that the occupation of channel i on node r at a given time 
t + 1 is equal to the postcollisional configuration of channel i on node r -  ei 
at time t. Time and space are measured in automaton units. 

Observables of the automaton are defined as averages over a non- 
* r equilibrium ensemble: f a r ,  t) = <nAr, t)>M~ and f i  ( , t) -- <n*(r,  t)>nl. :. 

In particular, the hydrodynamic variables, that is, the densities of con- 
served quantities, are given by 

I, h 

<A(r,t)>~,~-{<A~(r,t)>l ~ " ~ ' ' - ' -  ~-=o = ~ Z(r,t) a;=_ ~ y*(r, t) a,._ 
i = 1  i = 1  

(2) 
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where a; is a vector whose elements are the collisional invariants. In a 
thermal automaton whose collision rules preserve the number of particles, 
the momentum, and the kinetic energy per node, s = { 1, c~, e~ = c~/2} for 
the collisional invariants and (_A(r, t ) )  = {p(r, t), pu(r, t), e(r, t)} for the 
hydrodynamic variables. In this case, the number of hydrodynamic fields is 
Nhy~o = D + 2, where D is the space dimension of the automaton universe 
(we ignore effects related to spurious global invariants~'~). 

The average of Eq. (1) over the nonequilibrium ensemble yields 

fAr, t + l ) = f * ( r - c . t )  = exp{ - c ;  �9 Vr} fi* (r, t) (3) 

With the assumption that particles entering a collision are decorrelated, 
Eq. (3) becomes the lattice Boltzmann equation 

f , . ( r , t + l ) = e x p { - e ; ' V r }  ~ as(~) l . ,~- I - I  
~.1 o-t 

h 

x 1--[ ( L ( r ,  t))  "~ ( 1 - A - ( r ,  t)) ~' - "  
k = l  

(4) 

where (~)1.,-I- I-} is the collision matrix. The entries of this matrix are the 
probabilities having a configuration {G} as the outcome of a collision 
starting from a configuration {s}. 

In automata with semi-detailed balance, ZI.,.I ( 3 ) t . , l -  I~l = 1, it can 
be shown ~-'~ that an arbitrary distribution of the Fermi-Dirac form for the 
single-particle distribution 

I 
f~= 1 +exp{ -_b �9 cji} (5) 

without correlations between fluctuations in different channels, is invariant 
under the collision step. The quantities b are the thermodynamic fields con- 
jugate to the conserved quantities (e.g., in a thermal automaton _/2- 
{e, ),, - f l } ,  where fl is inversely proportional to the absolute temperature, 
o~/fl is the chemical potential, and ), is the thermodynamic potential con- 
jugate to the momentum). The scalar product denoted by * is a contraction 
of the indices labeling the conserved quantities. We define a local equi- 
librium ensemble 

1 
f~Z(r, t) = 1 + exp{ -_b(r, t) �9 ai} (6) 
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such that 

h 

(A(r, t))LE---- Y. f~EIr, 0_ai 
i = l  

b I 
1 + exp{ -_b(r, t) �9 _a,.} -ai--- (-A(r' t))NE (7) 

~ i = 1  

Equation (7) defines the thermodynamic potentials implicitly in terms of the 
local values of the densities of conserved quantities: _b(r, t)=_b((_A(r, t))) .  
For densities of conserved quantities, since the local equilibrium ensemble 
has been defined in such a way that (_A(r, t))LE=(A(r, t))NE , we may 
omit the label indicating the ensemble over which the average is taken. For 
an arbitrary vector {B/(r, t)} ~/'= t, the local equilibrium average is given by 

h 

(B(r,  t))LE -- ~. B/(r, t )fEE(r,  t) (8) 
i = l  

Multiplying Eq. (3) by _a;, summing over i, and making use of the con- 
servation laws, we obtain 

b 

�9 r (_A(r, t +  1 ) ) -  (_A(r, t ))  = ~, ( e x p { - c ~ . V , . } - - 1 ) f i  ( , t )az  (9) 

The microscopic evolution equations (9) are finite-difference equations 
containing the full dynamics of the automaton susceptible to describe its 
behavior at all scales. In order to derive hydrodynamic-type equations from 
(9), we introduce the parameter e, which represents the ratio between 
characteristic microscopic and hydrodynamic length scales. This ratio is 
assumed to be small, a fact which allows us to perform a multiple-scale 
analysis. Thus, we anticipate the scales of physical interest in the solution 
of (9) and introduce the following variablesC21: a space variable r~ = er and 
two time variables t~ = et, which is of order e ~ in the regime where Euler 
equations are valid, and t 2 =e2t, which is of order e ~ in the dissipative 
regime. Hence, the substitutions V~ ~ eVr, and 0,--, ~ t3,, + e  2 0,, in Eq. (9) 
lead to the hierarchy of equations labeled by the different powers of e: 

el: atl(_A(r, t ) )  + Vn �9 (_J(r, t ))  LE = 0 (10) 

( 1 2 ) (_A( r , t ) )  1 e2: 0,: -~- ~ c3,, = ~ Vr Vr, : ((cJ_(r, t ) )  LE ) 

I i + ~  (exp{--cS'Vr~}--l)a_,(f*(r,t)--f~E(r,t)) (11) 
~ - i = � 9 1  
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The definition of the currents associated to the conserved fields is 

h h 

( J ( r ,  t ))L E -- ~ J;f~E(r, t ) =  2 c'-a'f~E( r' t) 
i = l  i = l  

with J,. = cia~, and 

(12) 

h h 

(eJ(r ,  t ) )LE= ~ e i J _ i f L E ( r ,  /)= E CiC,qif~E( r, t) (13) 
i = l  i = 1  

Equations (10) are the Euler equations describing the streaming part of the 
dynamics, and Eqs. (11) contain the dissipative contributions. 

In order to perform the averages we choose an initial local-equilibrium 
ensemble in which the values of the thermodynamic variables vary 
significantly only over a hydrodynamic length scale. This corresponds to 
the Chapman-Enskog picture of a nonequilibrium statd 71 where the devia- 
tions from local equilibrium are of the order of the gradients of the con- 
served quantities [i.e., both 6f/(r, t ) = f / ( r ,  t ) - f ~ E ( r ,  t) and 6f*(r, t ) =  
f * ( r ,  t ) - - f~E(r ,  t) are of order el. In case the initial state does not satisfy 
this condition, there should be an initial transient regime where the 
hydrodynamic equations are not valid. The duration of this regime is of the 
order of r .... the time necessary to relax to local equilibrium. Hence, to 
lowest order in e, the lattice Boltzmann equation (4) can be linearized 
around the local equilibrium distribution, 

6f*(r, t) = ~  Sa~E(r, t) 6fj(r, t) + (9(e 2) (14) 
./ 

with 

~'~E(r, t ) =  
sj--f~E(r ,  t) 

{.,1 { ~} 
h 

X I-I (f~E( r' t)Y'k ( 1 LE - f k  (r, t)) tl-'~k~ 
k = l  

The matrix ,.~LE(r, t) can be separated into two parts 

Sa~E(r, t) = ~i~t.k/.E(r , t) + ~/'~E(r, t) 

(15) 

where ~E(r ,  t) = x~E(r, t) _a i * (A  I A ) LE-I (r, t) * aj is an operator projecting 
onto the set of constants of motion, with (_Aid)LE(r, t ) =  Y~.iK~E(r, t)a_ia_i, 
the local equilibrium susceptibility matrix, and K~E=fiLE(I--fiLE). The 

(16) 
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matrix ,,~pLE(r, t) has the same set of eigenvectors as ~,aLE(r, t). The eigen- 
values of ~'LE(r, t) corresponding to the set of collisional invariants are 
zero. The remaining eigenvalues (i.e., the k&etic eigenvalues) coincide with 
those of ff'LE(r, t) and have an absolute value strictly smaller than one. c8~ 
Using these properties, we can solve Eq. (14) with the specified initial con- 
ditions [i.e., fif~(r, t ) = 0 ] ;  the result reads (the technical details of the 
derivation will be presented elsewhere) 

t"Lt':lr t) + d~)(e-r,,,) ~ f * ( r , t ) = -  ~ {[<~LE(r,t)] }O-(ci'Vr+C3,)~j , ,  

~=l  / = l  ( 1 7 )  

Within the same level of approximation we can further replace in (17) the 
upper limit in the summation over z by infinity for t >> r,,,. 

Recombining Eqs. (10) and (11) and inserting the result (17), we can 
rewrite the equations of motion for the hydrodynamic variables as a set 
differential equations (valid up to order e 2) in terms of the variables r, t, 
which are now taken as continuous, 

a,(_A(r, t)> + V r  ~ ( _J(r, t ) )  uz 

[ ~ '  0L,-: " VrfLE(r' ')1 (18) =Vr"  ~ -Ji {[~LE(r,t)]~}0.3.il (r, t)  c/ 
i. ] .1 r=O 

where _~LE(r, t)=~U--~'L~:'(r' t ) i s  the local equilibrium projector onto the 
space orthogonal to the set of collisional invariants. We have replaced the 
matrix ~LE(r, t) by .YH~(r, t), given that the quantity upon which it acts 
contains no projections onto the conserved quantities. The prime in the 
summation indicates that the first term of the sum (r = 0) is multiplied by 
1/2; this factor appears as a consequence of the discreteness of time in the 
automaton. 

Equation (18) is the most general form of the hydrodynamic equations 
in the lattice Boltzmann approximation. They can be used to explore non- 
equilibrium phenomena such as far-from-equilibrium steady states and 
hydrodynamic instabilities. The main novelty with respect to previous 
derivations is that the expression of the dissipative term [ on the right hand 
side of Eq. (18)] is valid even far from global equilibrium. 

We can linearize Eq. (18) assuming small deviations from a global 
equilibrium state (fi_A(r, t ) )  = (_A(r, t ))  - (_A)~q to obtain the usual linear 
response result ~ 4. 9. to~ 

a,(6_A(r, t ) )  +V~. [(J_ I_A)~,t. (_A I_A)~' �9 (~_A(r, t ) ) ]  

= VrVr  : [A~eq * ( d  I d ) e q  I * (J_A(r, t ) ) ]  (19) 
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where ( J [ d ) eq = ~"~i xcq  ~-ia-i, and the matrix of linear transport coefficients 
is given by the expression 

r = 0 r = 0 i, j 

= 3=,, p Z ( (J;6n,(r, t))(Jj 0nj(r', 0))) ~% (20) 
i , j  

where _Ji=5-'.~ ~ is the part of the current with no projections onto ~'~.il ~-I 

the linear constants of motion, and V is the number of nodes of the lattice. 
The superscript B indicates that the time-correlation function is evaluated 
in the Boltzmann approximation (i.e., mode-coupling effects are neglected). 

In summary, we have given a derivation of the nonlinear hydrodynamic 
equations for a lattice gas automaton satisfying the semi-detailed balance 
condition. This condition implies that a factorized distribution with a Fermi- 
Dirac form for each channel is a stable global equilibrium distribution, 
invariant under the automaton dynamics. The derivation makes use of the 
fact that a local-equilibrium distribution for each node in the lattice is 
invariant under the collision step of the automaton dynamics, but not under 
the propagation step. The deviations from local equilibrium are therefore of 
the order of the gradients of the densities of the conserved fields, which are 
small in a hydrodynamic regime. The automaton thus lends itself naturally to 
a Chapman-Enskog description in which the nonequilibrium distribution is 
obtained perturbatively from the local-equilibrium one. The present deriva- 
tion ignores modifications of the probability distribution arising from the 
presence of spurious invariants, and neglects mode-coupling effects. 
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